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ABSTRACT 

Approximate solutions for fluid dynamics and thermal problems by 

var ia t ional  method were investigated. 

technique, based on a l eas t  square procedure originally suggested by 

Citron, was i l lus t ra ted  by several specific examples. 

obtained fo r  a melting-freezing problem, a natural  convection problem, 

and two transient heat condition problems. 

so lu t ims  were made t o  demonstrate the degree of accuracy of the method $ -  

The application of the variational 

Solutions were 

Canparison w i t h  existing exact 

used. 
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Specific heat 

Squared error functional defined by Eq. (1.4) 

Gravitational acceleration 

Grashof Number 

Generalized f'unction, defined by Eq. (4.13) 

Convection heat transfer coefficient 

Thermal conductivity 

Reference length or latent heat of f'usion 

Nusselt Number 

Pressure 

Generalized coordinates 

Prandtl Number 

Generalized function, defined by Eq. (1.2) 

Generalized coordinates 

Rayleigh Number 

Temperature 

Time variable 

Dimensionless velocity component in the x direction 

Velocity component in the x direction 

Dimensionless velocity caaponent i n  the y direction 

Velocity component i n  the y direction 

Dimensionless space variable 

space variables 

Thermal d i f f i s iv i ty  

Coefficient of thermal expansion 
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- Depth of freezing front a t  time t 
$0 

6 1, s2 
0 - Dimensionless temperature variable 

- Thermal penetration thickness 

cr - Dynamic viscosity 

V - Kinematic viscosity 

P - Dimensionless space variable in the x direction 

P - Mass density 

7 - Time variable, or dimensionless time variable 

6 - Stream f’unction 

$ - Dimensionless stream function 

- Hydrodynamic penetration thickness defined i n  Section 4 

- Thermal penetration thickness defined in Section 4 
0, 
$T 



c 
The desirabi l i ty  of good approximate solution techniques for  

mathematically d i f f i cu l t  problems need not be argued, U n t i l  re la t ively 

recently, approximate solutions for f lu id  dynamics and thermal problems 

were a h o s t  exclusively obtained by integral  techniqueso In recent 

years approximate solutions of the Galerkin type and the Biot type, 

founded on the ca%culus of variations, have begun t o  be used., 

Most of the applications of Biot-type var ia t ional  solutions have 

been t o  a lfmited class  of eonduction problems. The purpose of th i s  

report  is t o  demonstrate the u t i l i t y  of ‘Biot-type var ia t ional  techniques 

f o r  a wider var ie ty  of problems, Specific examples included in  th i s  

report include a melting-freezing solution, a natural  convection problem 

and two special  conduction problems. 
0 9 2 9 3 )  

When Biot originally proposed h i s  var ia t ional  technique, it was 

based on the ideas of minlnmm entropy produetion, Since then, it has 

bsen demmstyated i:: G ::*m&er cf vqrs that the  same f i n a l  resu l t s  cm 

be obtained on pure* mathematical grounds” abese l a t e r  expositions 

have the advantage of removing the themodynamfe l imitation implicit  i n  

Biot’s or iginal  workS and allow the procedure t o  be viewed as one that 

works for  any physical phenomena governed by a par t icular  type of 

partial d i f fe ren t ia l  equation, Of the various developments possible, 

a development based on an idea or iginany suggested by Citro A41 s favored 

in t h i s  reporto 

Some specific d i f fe ren t ia l  equation i s  almost required In a dfs -  

cussion of the variational technique 

example is chosen hereg but as the examples contained l a t e r  i n  th i s  

report demonstrate, the  technique i s  not Ymited to th i s  re la t ively 

simple type of problem, 

The transient heat conduction 
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5 .  

Consider solutions t o  

r 

f o r  a region x l s x  s x  

and i n i t i a l  conditions. A new f’unction Q i s  defined, where for  a 

true solution 

t,t- 0 and subject t o  appropriate boundary 2 ’  

t 
Q(x,t) = - 5 k d t  

0 

which yields with the different ia l  equation 

The f’unctional E i s  defined as 

1 o x  

For a t rue solution, E(t)  i 0 as  a consequence of Equation (L2) .  I n  

constructing approximate solutions the procedure i s  t o  compute Q for  

a specified T 

minimize the error represented by the functional defined by Equation (1.4). 

through Equation ( L 3 ) ,  (not Equation (L2))and then t o  
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Assume then that 

where qi represents n unspecified functions of time, i.eo8 

qi = qi(t), and T = to It is assumed that T(x,qi,T) satisfies 

all boundary conditions required of the function T 

not necessarily satisfy boundary conditions imposed on space 

derivatives of the function T. As a consequence of Equation (1.3) 

but it does 

and therefore, after integration, 

Thus * 
n 

Combining Equation (1.8) and Equation (l.g), it is found that 

j=n -J 

when considered as a function of (xsqi,bi,T), is linear in the 6 0 i 
If we now consider the minimization of E(t) as a result of varia- 

tions of aQ/& but not aT/dx, or T, Equations ( l e 5 1  through (1.9) 



I‘ 
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\ ?  

require tha t  th i s  i s  equivalent t o  a minimization w i t h  respect t o  the 

f’unctions % while the q a r e  considered fixed. Application of 

EUler*s equation then yields the n equations 
j 

J 
1 X 

J 

which are 1st order ordinary different ia l  equations fo r  the q ( t ) .  

In  the sections which follow, this  var ia t ional  procedure is  applied 

t o  a number of different problems. The object of these sections is t o  

i l l u s t r a t e  m e  vqriety of particular techniques required and thus t o  

suggest approaches fo r  other problems. An additional object i s  t o  

canpare var ia t ional  resu l t s  with exact resu l t s  so as t o  provide same 

Insight t o  the accuracy of approximate solutions, 
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11 e A Melting-Freezing Problem 

Approximate variational solutions for melting-fkeezing problems 

are relatively easy to obtain, and appear to be highly accurate. As an 

example of the techniques involvede one specific problem is considered 

in this section, and the variational results are compared to results 

available f'ram an exact solution ( 5 )  * 

The specific example considered is that of a semi-infinite solid 

in contact with a semi-infinite liquid of the same density, 

I 
- %  I , ' + X  

xrr 0 

The geometry is as illustrated in the sketch above. The subscript 1 

shall refer to the left-hand, or solid, phase while the subscript 2 shall 

refer to the other, Assuming solidifkation is occurring9 the interface 

between the two phases moves to the right with velocity $,(t)$ where 
a 

so(t) is the distance from x 5: 0 to the interface. 

The governing differential equations, assuming constant properties, 



I 
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9. 

The i n i t i a l  conditons assumed for the problem are 

1 -  

I 

Tl(xsO) = TsP a constant 

T~(X'O) = Tt" a constant 

while the boundary conditions are 

and 

x <  0 

x > o  

Tl(609t) = T2( $,st) = Tmg a constantp t > O  

. "'22) 
+ PL 8, = -k2 

xa $0 x= bo 

where L represents the enthalpy difference between the saturated l iquid 

and solid state.  

sol id  state are identical. 

It has been assumed tha t  the density of the l iquid and 

(2-3 

(2-4) 

I n  the solution of th i s  problem it is assumed that the thermal e f fec t  

i n  both the solid and l iquid can be represented adequately by a penetration 

thickness. The two penetration thicknesses, Sl(t) and 6,(t), thus becone 

the unknown functions sought by the  variational procedure. These penetra- 

t ion thicknesses, as  i l lus t ra ted  i n  the ear l ie r  sketch, are measured fron 

the  moving interface. 

To formulate the  variational problem, the fol lming functions are 

defined. 

d t  

0 

d t  

0 
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l -  

The result of the variational procedure may be written as 

Fran equations (2-1) and (2-5j  

The temperature profiles used for this  problem are 

T1-TB 2 - = (1 + t1) 
Tm-Ts 

-1 G e;+ 0 



where 

(2-10) 

x- bo 
t2 - - 

62 

The temperature profiles chosen satisfy the boundary conditions of 

equation (2-3) as weU as 

T 1 ( - ( + J o ) s  t) = Ts 

F’ram equations (2-8) and (2-9) there results 

and in which the conditions 

(2-14) 



12. 

have been introduced. The conditions of equation (2-14) resu l t  f h n  

the  definition of Q, equation (2-5), and the idea tha t  beyond the 

penetration thickness, the  heat f lux i s  zero. 

From equation (2-13) it follows tha t  

The boundary condition of equation (2-4) m;ay be written as 

Fran equations (2-15) and (2-16) there resu l t s  

where 

A = (Al-A2) 9 PL 

Integrating equation (2-17) and noting tha t  6,(0) = %1(0) = i2(0) = 0 

yields 

. 
With the two previous expressions it is  possible t o  eliminate 6 
f'rcxn the expressions for  Q and &/at and t o  compute 

and 6 ,  
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Also, frm equation (2-9) 

(2-20) 

Thus, if the results fram equations (2-151, (2-17)s (2-18L (2-19) and 

(2-20) are substituted into equations 

are performed, the following ordinary 

- - c, s1 4- C2S2 -c - 1 
$1 

1 
-D3 G = 

4, 4- D 2 i ,  

where 

c2 

(2-7) and the indicated integrations 

differential equations result, 

0 

0 

(2-21) 



J 

i 

The solution t o  equation (2-21) which s a t i s f i e s  the physical 

conditions of the problem and the i n i t i a l  condition 

may be written 

4(0)  I 0 =: S 2 ( O )  

where 

The solution obtained has been cmpared wi th  the available exact 

solution for the specific case of freezing water, The conditions chosen 

were Tm = 32OF, Ts = O°F, Tc = 40 0 F, pz = 6)1 = 57 lbm /ft 3 

Btu and L = 143 /lbme The exact solution yields 

$O(t)  = 0.0186 

while the approximate solution yields 

S0(t) = O.Oa88 d'"ip 

(2-22) 

(2-23) 

(2-24) 

The temperature prof i les  for the approxhate and exact solutions a re  

shown on the following graph, 

standingly good. 

It is obvious tha t  the agreement i s  out- 





111. Transient Conduction w i t h  non-uniform ini t ia l  conditions */ 

Previous solutions for transient conduction problems by var ia t ional  

methods have been limited t o  problems involving uniform i n i t i a l  conditions. 

I n  this  section, var ia t ional  solutions fo r  two problems with non-uniform 

i n i t i a l  conditions are  obtained. 

For one space variable transient conduction w i t h  constant properties, 

the governing d i f fe ren t ia l  equation is 

Introducing the following dimensionless variables 

X p X = -  L 
k t  , 't = -  2 

T * TI 
5-7  PCL 

e e  

i n  which T1 and T 

reference length, equation (3.1) may be written as 

are suitable reference temperatures and L is  a suitable 2 

I n  order t o  implement the variational procedureo a new variable Q ( X , - T )  

i s defined by 

/ %  

J 
0 

It i s  apparent that Q(X3't) is proportional t o  the heat flux over the time 7 .  

I n  the usual way, the definition of 



c and the specification that the set of unknown fbctions involved in the 

variational procedure are designated by Q~(T)* leads to the following 

equation as the variational result for this problem. 

The flrnction Q is computed from an assumed temperature profile by 

noting that froan equations (3.2) and (3.3) it follows that 

.T ,7 

= @(X,o) Q(X,?) 

Therefore Q may be determined by integration of equation (3.6). 

Problem I 

The first problem considered is that of a slab, of thickness 2L, with 

7, 

. 

an initial 1hea.r temperature distribution, sub- 

jected to perfect insulation of both surfaces for 

time greater than zeroo 

reference temperatures and the location of the 

coordinate axis are illustrated. The initial condi- 

tion may be written 

In the adjacent figure the 

The perfect insulation boundary condition for 7 7 0 requires 

Q(.l ,%) = Q(-l,%> = 0 



Y 

~ 

Equation (3.8) follows from the interpretation of Q given with equation (3.3). 

Since the variation of @ 

f'unction of X, 8 is assumed to 

e = E 1 + ql(T)x + 

about the mid-plane value of $ is an odd 
be of the form 

Additional terms involving higher odd parers of X could be taken, but it 

is expected that the solution obtained f r o a n  equation (3.9) is adequate for 

almost all purposets. From the initial condition, equation (3e7)a it follows 

that 

(3 10) 1 
q1(0) = P q2(0) = 0 

Utilizing equations (3.6) and (3.9) 

Thus 

where the condition Q ( ~ , T )  = 0 has been used. 

It is now possible to compute the following terms required for 

equation (3.5) 

&x2) % =  2 
.L 

ae = q1 + 3% x2 E 



I .  

Introducing the previous expressions into equation (3 . 5) yields the 
92' following two ordinary differential equations for q1 and 

Performing the indicated integrations reduces these equations to 

The solution to these equations is given by 

9x7 -127 
ql(d = Ale + A2e 

-Ai - (Y + 2 A,) Bi 33 = and 

The initial conditions, equation (3.10) yields 

1 A1 + A2 = 

(3 

B1 + B2 = 0 



J 

20. 

Computed results are given in the following table along with values 

frcm the exact solution. The agreement is excellent. 

Pos it ion 
Time 

T = kt - 
F a 2  

0,o 

0.2 

0.4 

0.8 

1.6 

0 

L 

Exact(5 

500 

500 

. 500 
500 

500 

500 

Variational 

500 

500 

500 

500 

. 500 
500 

JJ 

Exact 

0750 

. 676 

.608 

. 540 
506 

500 

T-T, 
for  Problem I. A Values of 8 = - 

%-T, 

Variational 

0750 

0675 

607 

. 540 
506 

500 

. ; - = X = l  X 
L 

Exact 

1.000 

e749 

*653 

557 

508 

500 

Variational 

1.000 

746 

,650 

556 

508 

500 



L 

\ *  0 

e 
L 

I 0 

Problem I1 

The second problem considered is tha t  of a slab, of thickness L, 

w i t h  an i n i t i a l  temperature distribution which i s  parabolic. 

greater than zerop the slab is subjected t o  a time dependent temperature 

on one surface while the other surface temperature remains constant. 

adjacant figure i l l u s t r a t e s  the problem. 

For time 

The 

The i n i t i a l  condition is  

8 (x30) = 4 x (1-x) 

0 3c=x 
L 

allawed very rapid 

The boundary conditions are  

8(l,?) = 0 

-1007 e(o,?) = 1 - e 

The particular form chosen for  Q(0,T)  was 

dictated by a desire t o  have a f'unction which 

surface temperature changes yet was simple t o  work 

The temperature, Q,  i s  assumed t o  be of the form of a f i n i t e  

?mer series. The number of terms in the ser ies  i s  taken as five, but 

the procedure for  fewer or more terms i s  similar. Thus 

W i t h .  

Consideration of the boundary and i n i t i a l  conditions, equations (3.26)-(3.28) 

yields 

with 

-loo.r qo(.r) = 1-e 

%(O) = -4 
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. 

Equation (3.30) contains three unknown f’unctions, 92’ q3$ and q4’ which 
must be determined from three differential equations. 

Following the procedure indicated by equation (3.6) there, results 

q5(?) Q(O9.r) q5 where 

It is noted that the absence of a heat flux boundary condition introduces BP). 

additional unknown Arnction 

does not appear in the expression for 9, q,..(?) appears in the variational 

results only through its first derivative, 4*(?). Additionally, the pazti- 

cular differential equation added thraugh q ( 7 )  is of a very simple form, 

and allows for an easy elimination of %(?) f’rcun the other differential 

equations . 

( 7 ) .  Since this unknown function, cq(?), q5 

5 

It is now possible to canpute the folluwfig terms required for 

equation (3 . 5) . 

x2 x3 % = T-r 
4 x2 x % =  2-‘4 

(3 033 

(3.34) 

& E  x2 - - -  x5 
2 5  (3.35) 



. 

Introducing the previous expressinns into equation (3.5) and performing 

the indicated integrations yields the folluwing ordinary d i f fe ren t ia l  

equations. 

A s  suggested befores the function q appears only through i ts  5 
derivative 4 
equations (3.38)-(3.40), 

straightforward manner. 

Thus eqgatian (3.41) may be used t o  eliminate 4 f'rm 
5' 5 

The resulting equations may be solved in a 

The solution may be written 

(3.43) 

(3.44) 



This problem was also done by utilizing one less unknown metion, Le., 

by terminating the assumed series for 8, equation (3.29), with the fourth 

term. The details of this simpler solution are not given here but the 

results for both solutfons are campared to exact solution results in the 

table and graph that follow, It is to be noted that both solutions give an 

excellent representation of the temperature for long times. The representa- 

t ion for short times is pgoodg for the higher order solution considering 

the severe test repreiiente2 by this exm>leo 



c 

T-T1 - 
T2-T1 

0 .a 

Figure IIo 

X x = -  L 

Canparison of Exact and Variational solutions 
for a slab with parabolic i n i t i a l  temperature 
distribution and t h e  dependent surface 
temperature. 
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IV* A NATURAL CONVECTION PROBLEM 

c 

? 

A. Variational Equations 

Steady laminar natural convection fran 8. vertical semi-infinite flst 

plate is a problem which has been investigated extensively. There exist 

approximate integral solutions' and exact theoretical results' 7, with 

which to compare a variational solution. 

Introducing the standard boundary layer assumptions'8) into the 

steady state Navier-Stokes, energy and continuity equations yield 

Y 

As has been sham by O~trach(~), it 1s permissible to neglect the 

dissipation and compression work terms in the energy equation if 

is small, as it almost always is, If, additionally, constant properties 

are assumed, and the purely hydrostatic pressure variation for y is 

introduced, the previous equations reduce to 

(4.4)' 

c 
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c 

c 

au av 
K + F =  * 

The introduction of a stream f’unction g p  defined by 

ident ical ly  sa t i s f ies  the continuity equation. Defining 

and introducing a coordinate t ransfopat ion fram (x,y) t o  streamline 

coordinates (f,$) the  following relat ions are obtained. 

The mmentum and energy equations i n  th i s  new coordinate system aze 

It is convenient t o  re-write the mmentum equation as 

I) (4.9) 

( 4 , l O )  
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Equations (4.10) and (4.11) are of a form that  allm the aprlication 

of the variational procedure. A new variable, associated with the 

var ia t ional  procedure of Equation (4.10) is  defined as 

The significance of Q is  cleaser i n  (x,y) coordinates. Util izing the 

relationship of Equation (4.8), Equation (4.12) may be re-written as 

I n  th i s  form it i s  apparent that  Q is  proportional t o  the heat flux 

through sane section y between zero and X. Associating $ = 0 with the 

w a l l ,  i.e., y P 0, then Q(5,O) is proportional t o  the t o t a l  heat flux 

frm the wall between zero and 

A new variable, associated 

Equation (4.11) is  defined a s  

with the variational procedure fo r  

In  (x,y) coordinates, H may be re-written as 

, x  

0 

I n  this formo H i s  seen t o  be proportional t o  the shear force a t  some 

section y between zero and x. A t  the wall, i o e e g  41 = 0, H ( 5 , O )  is 

proportional t o  the t o t a l  wall shear between zero and 5 = x/L 



The definition of the two error 

allows the writing of the variational equations for this coupled problem. 

In Equations (4.14) and (4.15) 9, represents a thermal ‘penetration 

thickness’ in terms of the stream f’unction, while drM represents a 

hydrodynamic ‘penetration thicknesso. Defining the p ( 5 )  as the unknown 

fbctions associated with El (and Q) and the q-n(C) as the unknown 

f’unctions associated with E2 (and H)s the variational equations are 

n 

) ($)($-U$-)dlb=O 
n 

0 

For this problem it is assumed that the temperature profile can be 

adequately represented by a single unknown function $,(?). Likewise 

the velocity profile is assumed to be representable by a single unknown 

function r b M ( < )  Under these assumptions, Equations (4.16) and (4*17) 

become 

(4.14) 

(4.16) 



. 
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c 

From the definition of Q i n  Equation (4.12) and the energy equation 

(Equation (4.10)) it follows tha t  

0 0 

where the condition 8 = 0 for  = 0 has been employed. Integrating 

yields 

in  which the constant of integration has been evaluated (as zero) by 

noting that, from the interpretation given t o  Q subsequent t o  

Equation (4.12), Q must be zero for  Jr = qT. Then 

(4.19) 

(4.22) 

since 



. Thus, Equation (4.18), the variational equation fo r  the thermal problem 

may be written specifically as 
c 

With velocity and temperature profiles,  Equation (4.23) represents 

one first order ordinary differential equation involving qT and 

From the definit ion of H i n  Equation (4.13) and the momentum 

equation (Equation 4.11) it follows that 

U 
Pr = - - Ra lo - 8 d5 

U 

where the condition U = 0 for  5 = 0 has been employed. Integrating 

yields 

i n  which the constant of integration has been evaluated (as zero) by 

noting tha t  H must be zero f o r  * = qM . The lower l i m i t  of the second 

integral  has been set a t  $I, because it i s  expl ic i t ly  assumed that 
e 

tT 4, and therefore, since 8 = 0 for  + 3 ’T, dt  = 0 L $ < qM . 
/ T‘ 

0 

(4.24) 



From Equation (4.25) 

Theref ore 

and 

Equation (4.19) the variational equation for the fluid-dynamic 

problem may be written specifically as 

(4.26) 
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c 

With velocity and temperature profiles,  Equation (4.28) represents 

another first order ordinary d i f f e ren t i a l  equation involving 4, and 

I n  Equation (4.28) it should be noted that, consistent wi th  what . 
’ dS does not ex is t  i f  $ 

6 
has been said before, the term 

Therefore the upper limit on the outer integral  must be changed from 

t o  4, when t h i s  term i s  m e t  i n  the integration. 

‘M 

5, ‘if 
$M 

The usual heat transfer correlations may be obtained in  the  following 

manner. The loca l  Nusselt number 

where the relat ions defined by Equations (4.8), (4.12) and (4.21) have 

been employed. 

The average Nusselt number 
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It i s  important t o  compute heat transfer quantit ies i n  the manner 

above rather than from derivatives of the temperature profile.  

I n  order t o  compare velocity and temperature prof i les  i n  the  physical 

plane it is necessary t o  determine y as a f'unction of 4. F'rapn the 

definit ion of the stream function it follows that 

0 

B. Velocity and Temperature Profiles 

For the coordinate system employed the condition tha t  shearing s t ress  

and conductive f lux be non-zero and f i n i t e  near the wall requires (see 

Equation 4.8) tha t  the velocity and temperature vary t o  the order of 

$'I2 In  the v ic in i ty  of the wall. For this reason the velocity prof i le  

w a s  assumed as a power series i n  terms of (*/$,)"I2, while the temperature 

p ro f i l e  was assumed as a power series i n  terms of ($/qT) 4 2 .  

The temperature prof i le  was made t o  satisfy the foilowing conditions 

8 = 0 fo r  4 = ), 

a9 q = 0 for  $ = t, 

while the velocity prof i le  sa t i s f ies  

4M U = 0 for  . / r = O ' a n d  $ =  
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The last condition for the velocity profile is obtained by evaluating 

Equation (4.9) at the wall (4  = 0). 

the usual ‘smoothne~s~ condition at 

a result of Equation (4.8) and the zero value for U at JI = 6,. 

This procedure is necessary because 

is satisfied identically as 4 P $M 

The velocity and temperature profiles are 

and 

Introducing these into Equations (4.23) and (4.28) yields 

ifM - (Ra)’I3(Pr) F2 (r) = 0 

where 

and 

5 3 L r 5 / 2  + 2- r2 + 
+ iar + 35 20 

4 / 2 1  
+ 3 - 1 6 r  I 

(4.34) 

(4.35) 

(4.36) 



Equation (4.34) may be rewritten as 

where t:/3 6, = r 

has been ut i l ized ,  

A comparison of Equations (4,35) and (4.38) yields 

F2(’) P r =  

Integration of Equation (4.38) yields 

and from Equation (4,29), (4.30), (4.32) and (4,40) the heat t ransfer  

results may be wri t ten as 

and 

Uti l iz ing Equations (4,31)$ (4.33) and (4,30), the relat ionship 

between y and 4 may be wri t t en  &s 

(4.41) 

(4.42) 



The assumption tha t  \?I 3 41 expl ic i t  i n  the previous developent, M T' 
results,  from consideration of Equation (4,39)' in  a minimum Prandt l  number 

of 3.90 for  t h i s  solution, 

Calculations were made t o  compare t h i s  variational solution t o  

previous solutions. 

as well as the velocity and temperature prof i les ,  f o r  the several  solutions 

is given i n  the figures which follow, 

A graphical representation of the heat transfer resul ts ,  

An examination of these figures reveals that the heat t ransfer  resu l t s  

a r e  poor except fo r  high P rand t l  numbers and tha t  the velocity and temper- 

a ture  representation i s  not significantly be t te r  than that obtained frm 

an integral  approximate solution. 

r e su l t s  obtained w i t h  t h i s  problem are  more a measure of the unsuitableness 

of the coordinate system employed than of the var ia t ional  procedure. 

It is  possible t h a t  the re la t ive ly  poor 
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V* CONCLUSION 

The present report c lear ly  demonstrates t h a t  the var ia t ional  solutions 

There ex is t  obtained have the accuracy desirable of approximate solutions. 

a large number of problems t o  which this  var ia t ional  technique is apparently 

applicable. 

plicated problems, and resu l t s  of t h i s  continuing investigation w i l l  be 

the subject of f'uture technical reports. 

Work is  now under way t o  t e s t  the technique fo r  more cm- 
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